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Micellar aggregates of ionic surfactants are known to possess a rich variety
of interesting thermodynamic as well as structural properties, which are essentially
dominated by simple effective interactions between the aggregates. Because of their
technological relevance enormous efforts have been invested to understand and char-
acterize their interactions in solution with the goal of developing substances with nov-
el material’s properties. On a theoretical level several approaches have been proposed
to describe their effective interactions adequately, generally based on the DLVO theo-
ry. However, these approaches do not take into account aspects of stability of the ag-
gregates and therefore fail in the description of several important characteristics, such
as, e.g., the re-entrant behavior of the apparent molal heat capacity appearing with
increasing density of the micelles. In this paper we study the effective interactions of
these systems by investigating the suitability of the Gauss-core model, to reproduce the
relevant thermodynamic properties. To this end, we discuss the Gauss-core model in
comparison to the standard DLVO model and demonstrate its aptitude to reproduce
the results from calorimetric experiments of the ionic surfactant sodium decanoate in
water.

KEY WORDS: aqueous suspensions of ionic surfactants, coarse-grained models, com-
puter simulation

1. Introduction

Micellar aggregates are formed in aqueous suspensions of amphiphilic mol-
ecules, in which the hydrophobic ends of the molecules tend to stick together
and the hydrophile ends protect the resulting micelles from external influenc-
es through repulsive forces. Non-ionic surfactants typically constitute clusters of
1000 or more molecules, while ionic surfactants generally only manage to cre-
ate clusters of 10–100 molecules, because their charges tend to break the par-
ticles apart. These micellar aggregates are characteristically formed in a critical
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temperature range and above a critical micellar concentration (CMC). Beside
their typical spherical form in the dilute regime they can change their shape from
rod- to layer-like at higher concentrations [1,2]. In addition to their aggregation
tendency, another important property is their large active surface per amount of
immersed material, which causes that their structural as well as thermodynamic
properties are mainly influenced by effects on these surfaces and, in particular,
by the effective interactions arising from them. Micellar systems are playing an
important role as solvation agent in many technological applications [3–6]. In
particular, they are widely used as detergents and carrier for active substances
in pharmaceutics, petroleum extraction, as well as in organic synthesis.

Due to their technological relevance enormous efforts have been invested
to characterize and understand their interactions in solution and to study their
structural as well as thermodynamic properties. The traditional procedure is to
measure their properties with experimental techniques. A very sensitive quantity
is the heat capacity which results from calorimetric experiments. It is particular-
ly sensitive to the structure, electrostatic charge, and molality of the immersed
material, as well as to the external conditions imposed on the system.
Knowledge of the heat capacity as a function of all these variables is necessary
to optimize their material’s properties and to develop new uses. The thermody-
namic properties of ionic surfactants have been extensively studied at various salt
concentrations, solvents and external conditions [7–11].

A difficulty of the only use of experimental methods for investigating
thermodynamic properties is often the interpretation of the results. A convenient
approach to remedy to this problem is to use computer simulation. Several strat-
egies have been proposed in the past, attempting to compute micellar systems
on an atomic scale. But it clearly appeared that describing them on a fully at-
omistic level is difficult due to their complexity and system size. To overcome
this problem, several models of different degrees of sophistication and accura-
cy have been developed. Currently, the most accurate approach for describing
systems of charged micelles is based on the so-called 2-component model [12].
In this model, the micelles as well as the surrounding counter- and salt-ions are
explicitly represented by charged species, whereas the solvent is treated as a
dielectric medium. Recently, extensive investigations with molecular dynamics
(MD) and Monte Carlo (MC) simulation methods have been carried out to
obtain accurate numerical solutions of such 2-component-model systems [12–
23]. However, computer simulation of these models are often prohibited by a
slow equilibration as very different length and time scales for the various ion-
ic species are involved [24]. For this reason most simulation approaches involve
some degree of coarse-graining, where the degrees of freedom of the small-
er ions are traced out, while the charged micelles interact through an effec-
tive potential resulting in a coarse-grained, effective 1-component description of
the suspension. A widely accepted theory to account for the effective interac-
tions between stable charged micelles in aqueous electrolyte suspensions is the
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Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [25–27], which has suc-
cessfully been used to describe aqueous suspensions of polystyrene or silica par-
ticles [28–30]. The DLVO potential is essentially a screened Coulomb interaction
and arises as a solution to the linearized Poisson–Boltzmann equation. By add-
ing salt (or other electrolytes) to the system the effective screening can be var-
ied and this may lead, under appropriate external conditions, to the formation
of various crystal phases. This theory, however, involves several approximations
which limits its scope of application. In case of aqueous suspensions of ionic
surfactants a significant shortcoming is that it does not take into account the
instability of the aggregates, which causes the particles at higher surfactant con-
centration to break apart due to strong repulsive effective interactions. As a con-
sequence, the excess of monomers in solution further screens the interaction of
the remaining micelles. This property leads, e.g., to the observation of the re-
entrant behavior of the apparent molal heat capacity with increasing surfactant
concentration. However, it is well-known that in studies within the DLVO theory
no re-entrant behavior has been found to date [30].

In this paper we investigate the usefulness of the purely repulsive Gauss-
core (G) potential to describe the effective interactions of aggregates of ionic
surfactants in water. In particular, we investigate the influence of the inherent in-
stability of the aggregates against an increase of the surfactant concentration. To
this end, we compare the numerically evaluated heat capacities of the model with
results obtained from calorimetric experiments with the standard ionic surfactant
sodium decanoate (NaDec) in water.

This paper is organized as follows. In Section 2 we briefly review the char-
acteristic features of the standard DVLO model and, subsequently, introduce the
Gauss-core model. Then, in Section 3 we present and discuss the theoretical re-
sults in comparison to the data resulting from calorimetric experiments. Finally,
we end the paper with a summary and the conclusions.

2. Theoretical aspects and model system

In the last decades a lot effort have been invested to understand on a the-
oretical level the effective interactions acting between charged micelles immersed
in an aqueous electrolyte suspension. They deviate from ordinary Coulombic re-
pulsion because of the presence of a large number of very mobile simple ions
(microions) in the solvent that effectively screen the interactions between the
highly charged micelles (macroions). The simple ions may be the ionized mono-
mers and their counterions, as well as the ions from an added salt. The effec-
tive interactions between the charged micelles are usually described within the
framework of the DLVO theory [26,27,31]. Within this theory, the effective in-
teractions between the micelles are mainly determined by the creation of electric
double layers close to the charged surfaces (see figure 1). Their existence is due
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to the interplay of entropic effects, which favor the homogeneous distribution of
the mobile charges, and the electrostatic attraction between the charges on the
surfaces and their counterions in the aqueous environment. The resulting effec-
tive interactions between the macroions adopt the form of a Yukawa-type pair
potential [30,31]

�D(�r) = ∞ for |�r| � d,

�D(�r) = Z2e2

ε

(
exp(κd/2)

1 + κd/2

)2 exp(−κ|�r|)
|�r| for |r| > d, (1)

where −Ze represents their respective total charge with e the elementary charge.
Moreover, d is the diameter of the macroions and |�r| is the center-to-center dis-
tance between them. The range of the potential is determined by the inverse De-
bye screening length κ, which depends on the temperature T and the total ionic
strength I via

κ2 = 4πe2I

εkBT
, (2)

where ε is the dielectric constant of the suspending medium. Moreover, if all the
microions in the suspension are monovalent, I equals the total number density

Figure 1. Double layer of ions surrounding the spherical micelle.



S.A. Baeurle and J. Kroener / Modeling effective interactions of micellar aggregates 413

of microions, i.e.

I = Zρ + 2ρs, (3)

where ρ is the density of the micelles, Zρ the counterion density and ρs the
density of pairs of added salt ions. These salt ions can either be unbounded
surfactant molecules or ions of an added electrolyte. However, despite its wide
application the DLVO theory involves certain approximations, which need to be
considered [32]: (1) it is based on Debye–Hückel theory that involves a mean
field approximation, which becomes invalid when the macroion charges or den-
sities become large; (2) the only use of the linear term in the Taylor expansion
of the exponential in the Poisson–Boltzmann equation is valid as long as the
electrostatic potential is smaller than the thermal energy, which is not true at
distances close to the surface of highly charged macroions; (3) the macroions
are assumed to have a finite size; (4) the effect of the solvent is only considered
in terms of its dielectric constant and, therefore, its structure is not taken in-
to account, which may influence the interaction when the macroions come close
together; (5) the instability of the micelles against an increase of the surfactant
concentration is not taken into account, which is particularly important for ag-
gregates formed by ionic surfactants. From these restrictions, we deduce that the
DLVO theory is only applicable to a limited range of systems and parameters.

In the following we investigate the usefulness of the Gauss-core poten-
tial, which has recently successfully been used in the field of polymer research
[33–35], to describe the effective interactions of aggregates formed by ionic surf-
actants in water. Similarly as in the DLVO model, we here only take into account
the suspending medium, i.e. the microions and the solvent, as a screening agent.
However, in our approach the effective interactions between the micelles are de-
scribed by a potential of the Gaussian form, i.e.

�G(�r) = �G(0) exp

[
−

( �r
σ

)2
]

, (4)

where σ is the length scale and �G(0) the energy scale of the model. The Gauss-
core potential has recently been shown to provide a very accurate description of
the structural and thermodynamic properties of polymer solutions over a wide
range of densities, confirming the idea that systems of polymers can be viewed
as effective soft matter systems [35].

3. Results and discussion

In the following we show that the Gauss-core model is capable to describe
the solvent-mediated effective interactions of aggregates of ionic surfactants over
a broad range of densities. In particular, we demonstrate that it can reproduce
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in a qualitative way their thermodynamic properties. To this end, we perform
a series of canonical Metropolis Monte Carlo (NVT-MC) simulations with the
Gauss-core model at different particle densities and temperatures. In the runs
we consider a system of 512 particles, which is first equilibrated over 10,000
steps at a temperature of T ∗

G = 0.035, and, then, cooled down stepwise about
30,000 steps to achieve a temperature decrease of T ∗

G = 0.005. After the final
temperature has been attained, we carry out an equilibration phase over 10,000
steps, followed by a production phase of 50,000 steps. Note that all the results
presented in the following are given in reduced Gauss-core units, a system of
units that is natural for the model [36]. In particular, we measure distances, en-
ergies and temperature in terms of the reduced variables |�r ∗

G | = |�r|/σ , �∗
G(�r) =

�G(�r)/�G(0) and T ∗
G = kBT /�G(0), respectively. The notation with an asterisk

refers to the corresponding quantities in reduced units. In figure 2 we present
the values obtained for the isobaric specific heat capacity per particle number as
a function of the particle density at three different temperatures. The quantity
is calculated using its relation to the isochoric specific heat capacity per particle
number given by

cP = cV + V T

N

α2
P

βT

, (5)

where αP and βT represent the thermal expansion and isothermal compressibil-
ity, respectively. In the figure we see that all the curves possess a maximum at
ρ∗

G ≈ 0.25 and, then, smoothly converge to the same heat capacity with growing
density. We also observe that the lower the temperature, the more pronounced
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Figure 2. Specific heat capacity at constant pressure per particle number as a function of the parti-
cle density obtained from NVT-MC simulations of the Gauss-core model at different temperatures.

All error bars are smaller than symbol sizes.
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the shape of the peak. Next, comparing the heat capacity curves of the Gauss-
core model with its melting temperature curve in figure 3, we recognize that their
maxima occur at the same particle density. This clearly shows that the heat ca-
pacity is an ideal property to study the nature and strength of the effective in-
teractions involved in the system. To further demonstrate this, we define the pair
repulsion energy characterizing the importance of the repulsions at the typical
particle separation a∗

G = ρ
∗ −1/3
G [31]

R∗
G

(
a∗

G = ρ
∗ − 1

3
G

)
= �G(a∗

G)

�G(0)
= exp

[
− (

ρ∗
G

)− 2
3

]
. (6)

The interaction strength between the micelles is then obtained as

D∗
G(ρ∗

G) = ∂R∗
G(ρ∗

G)

∂ρ∗
G

= 2
3

(
ρ∗

G

)− 5
3 exp

[
− (

ρ∗
G

)− 2
3

]
. (7)

In figure 4 we visualize both quantities as a function of the particle density. We
see that the curve of R∗

G increases monotonically with growing density, while its
density derivative undergoes a maximum at ρ∗

G ≈ 0.25. At this density the system
possesses a maximum in the interaction strength, which can readily be identified
to coincide with the maximum of the heat capacity and the melting temperature
given in figure 2 and 3, respectively. Additionally comparing the curve of the de-
rivative with the one of the heat capacity at the lowest temperature T ∗

G = 0.01,
we see that both curves are of similar shape. This further confirms that the heat
capacity provides a sensitive measure of the strength of the micellar interactions
involved in the system. At higher temperatures the particles possess a higher ki-
netic energy, which results in a smoothing of the respective heat capacity curves.
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Figure 3. Melting temperature diagram of the Gauss-core model evaluated by Stillinger and
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Let us next investigate if the Gauss-core model allows us to reproduce
qualitatively correctly the heat capacity curves obtained from calorimetric exper-
iments. To this end, we consider the standard ionic surfactant NaDec in water,
which finds wide technical application as detergent in soaps. In experimental in-
vestigations it is particularly convenient to determine apparent molal quantities,
which are independent of the amount of solute employed in the measurements.
More specifically, the apparent molal heat capacity is defined as

CP,φ = CP − n0c0
P

n
, (8)

where CP is the heat capacity of the solution and n the amount of the solute,
while n0 and c0

p represent the amount and the specific heat capacity of the pure
solvent, respectively. The thermodynamic properties of NaDec have extensively
been investigated through calorimetric experiments by De Lisi et al. [7]. In fig-
ure 5 we show the apparent molal heat capacity as a function of the reduced
density ρ∗

m = (m − mc)/mc at three different temperatures, where mc means the
critical molality of the surfactant. For the temperature dependent CMC’s we use
the experimentally evaluated values given in the same reference. We can easi-
ly convince ourselves by comparing these curves with the numerically evaluated
heat capacities of the Gauss-core model in figure 2 that the Gauss-core model
describe qualitatively correctly the thermodynamic behavior of NaDec in water.
Analogously to the theoretical curves, the experimental curves undergo a maxi-
mum at a reduced density of ρ∗

m ≈ 0.25 and, then, join each other at a density of
ρ∗

m ≈ 2.0. In this context, it is also worth mentioning that in neutron and light
scattering experiments it has been established that in the density range 0.0 <

ρ∗
m � 0.8, NaDec in water forms charged spherical micelles [1,2]. At ρ∗

m > 0.8
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the micelles grow only slowly and maintain a spherical shape up to a density of
ρ∗

m ≈ 1.6 [2]. Based on these observations, it clearly appears that the system is a
suitable example to demonstrate the usefulness of the Gauss-core model for de-
scribing effective interactions of ionic surfactants in water. Moreover, it is also
worth emphasizing that several other ionic surfactants show similar behavior in
their thermodynamic properties [8–10].

Next, let us compare these results to the standard model resulting from the
DLVO theory. Analogously, we compute the temperature-independent pair repul-
sion energy at the typical particle separation, characterizing the importance of
the repulsions, namely

R∗
D

(
a∗

D = ρ
∗ − 1

3
D

)
= �D(a∗

D)

kBT

= Z2
(

exp(κ∗
Dd∗

D/2)

1 + κ∗
Dd∗

D/2

)2 (
ρ∗

D

) 1
3 exp

[
−κ∗

D

(
ρ∗

D

)− 1
3

]
, (9)

where κ∗
D = κλ represents the reduced Debye screening length and λ = e2/εkBT

the Bjerrum length. In the following we take the Bjerrum length as the charac-
teristic unit of length of the DLVO model, which means that the reduced density
of the micelles are defined via ρ∗

D = ρλ3. Accordingly, the density derivative of
R∗

D(ρ∗
D) results in

D∗
D(ρ∗

D) = Z2
(

exp(κ∗
Dd∗

D/2)

1 + κ∗
Dd∗

D/2

)2 [
1
3

(
ρ∗

D

)− 2
3 + 1

3
κ∗

D

(
ρ∗

D

)−1
]

exp
[
−κ∗

D

(
ρ∗

D

)− 1
3

]
.

(10)
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This quantity, which characterizes the interaction strength in the DLVO ap-
proach, possesses a maximum at a density of ρ∗

D/ max = 1/2κ∗ 3
D (−5/2 + 3/2

√
3).

In figure 6 we show the pair repulsion energy and its density derivative for differ-
ent particle diameters as a function of the particle density. For the calculations
we use a screening parameter of κ∗

D = 1.7211 and a charge number of Z = 1.
We recognize that the curve of the interaction strength increases strongly at low
micellar densities and is maximal at ρ∗

D/ max ≈ 0.25. At higher micellar densities
the interaction strength decreases slightly until it reaches an upper bound, whose
magnitude depends on the particle diameter. The limit is imposed by the max-
imum packing density, which is given by a face-centered cubic arrangement of
the spherical particles. It is related to the particle diameter through the equation
ρ∗

D/fcc = 1.4133/d∗ 3
D [37]. Moreover, we deduce from the figure that with increas-

ing particle diameter the decreasing part of the curves becomes smaller, which
explains that in the case of the DLVO model a re-entrant behavior has only been
observed in the limit of vanishing particle diameter where the DLVO potential
goes over into the Yukawa potential [30]. In this context, it is also worth empha-
sizing that in the DLVO model the restriction on the range of densities is caused
by the finite size of the rigid macroions [30]. This might be a valid approxima-
tion in case of aqueous suspensions of stable polystyrene spheres. In such sys-
tems each of the colloidal particles consists of a large number of polystyrene
chains entangled in a coil. The chain ends are terminated with an acidic group,
like for instance −KSO4, dissociating in the aqueous medium. The stability of
the particles is essentially due to the high entanglement of the polymeric chains,
the π–π -interactions of the phenyl-rings and the strong electrostatic charges. In
contrast, aggregates formed by NaDec in water are relatively unstable due to
the lack of the first two stabilizing factors. Therefore, they tend with increasing
effective interactions to break apart or interpenetrate by forming larger particles.
Other deficiencies of the DLVO theory, already discussed in Section 2, are caused
by the unreliability of several approximations involved in the DLVO theory in
the regime of high micellar density [30].

Based on the above observations, we conclude that, in contrast to the
DLVO model, the Gauss-core model describes qualitatively correctly the effec-
tive interactions of the micellar aggregates formed by NaDec in water. This can
be explained in the following way. At a zero reduced density when the CMC
is attained, first micellar aggregates are formed spontaneously and their densi-
ty steeply increases with increasing surfactant concentration. The growth of the
density of the micellar aggregates leads to an increase of the effective interactions
between the particles. This causes that, with increasing surfactant concentration,
less particles are formed or the existing ones interpenetrate by forming larger
particles. As a result, an increasing amount of unbounded surfactant molecules
remains dissolved in the solvent and acts as a screening agent, thereby reduc-
ing the effective interactions between the remaining aggregates. As the surfactant
concentration increases, the screening effect causes first a slowing down of the
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Figure 6. Pair repulsion energy of the DLVO potential and its density derivative as a function of
the particle density.

growth of the interaction strength and, after passing through a maximum, to a
decrease of the quantity. This behavior of the interaction strength is also clear-
ly reflected in the heat capacity curves of NaDec in water and the curves of the
Gauss-core model. Finally, we emphasize that similar behavior of the heat ca-
pacities has also been found in experiments with other systems forming micellar
aggregates, such as, e.g., in case of sodium laureate or sodium palmitate in water
[38,39].

4. Summary and conclusions

In summary, we demonstrate in this paper that the effective interactions
acting between micellar aggregates formed in aqueous suspensions of ionic
surfactants are qualitatively correctly described by the Gauss-core model. To
demonstrate this, we calculate and compare the heat capacities obtained with
the Gauss-core model to the results obtained from calorimetric experiments with
the standard ionic surfactant NaDec in water. Furthermore, we show that the
behavior of the heat capacity with increasing surfactant concentration coincides
with the behavior of the interaction strength between the effective particles. We
explain these observations as follows. After the critical surfactant concentration
has been reached, a growing amount of micellar aggregates are formed sponta-
neously, leading to a steep increase of the effective interactions between the mi-
celles. This behavior is maintained until the strength of the effective interactions
counteracts the formation of new micellar aggregates or induces the generation
of larger ones by interparticle aggregation. As a result, a smaller amount of
new particles are formed and the additional surfactant molecules prefer to stay
as monomers in solution, thereby screening the effective interactions between
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the remaining particles. This leads to a decrease of the interaction strength and
accordingly to a decrease in magnitude of the heat capacity. By further investi-
gating the usefulness of the Gauss-core model, we find that it gives a better qual-
itative description of the effective interactions in the regime of high surfactant
concentration in comparison to the DLVO model. In particular, we note that in
case of the DLVO model the re-entrant behavior with increasing micellar con-
centration has not been observed to date. In conclusion, we deduce from this
study that the Gauss-core model is useful to describe the effective interactions
of aggregates of ionic surfactants in water and that it reproduces the essential
characteristic features of their thermodynamic properties. Moreover, it clearly ap-
pears that further investigations about the nature and role of the effective inter-
actions are necessary for the understanding and modeling of these systems above
their critical micellar concentration.
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